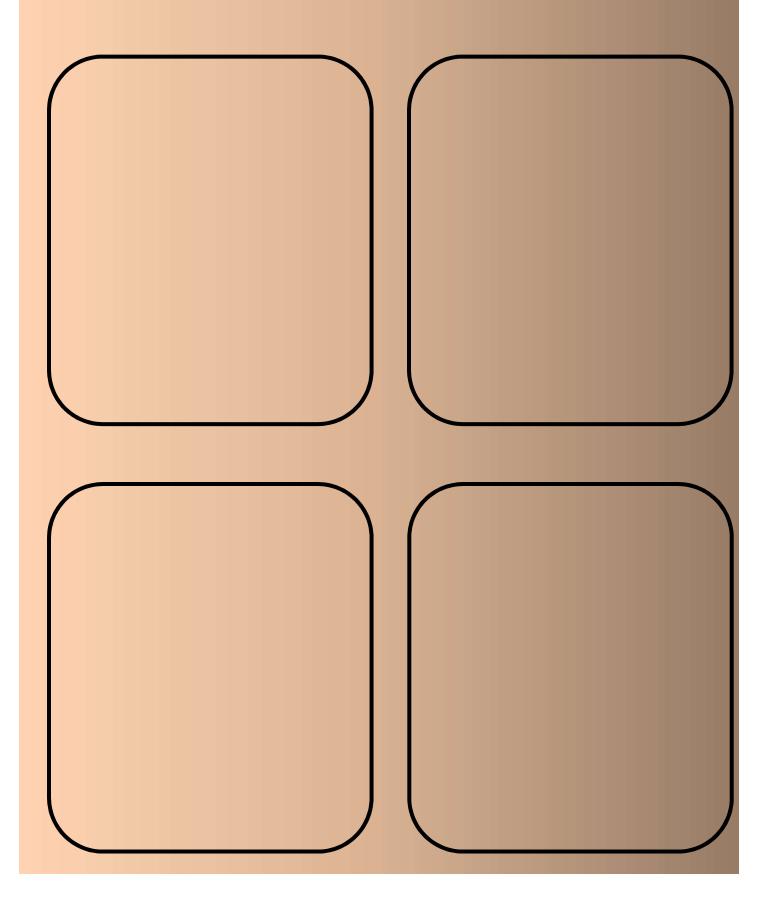
DST – NFTDC Centre for Materials & Energy Storage Platforms – H2

DST – NFTDC MECSP / H

DST – NFTDC MECSP / H2

DST – NFTDC Centre for Materials & Energy Storage Platforms (MECSP)^{\cdot} involves <u>graduation from</u> <u>TRL – 3 to TRL – 7</u>, wherein multitude of core competencies (differentials) are brought together in a solution path integral. This TRL 3 to 7 translational R & D is predominantly anchored on Material -Process – Product integration and optimization involving and dovetailing many materials and processes in a functional product design as systems.

The Projects are executed under three work packages :


WP#1: Bio Syngas & CNG Reformation System + CHP & BOS for SOFC System
WP#2 : Magnesium – Carbon based H₂ Storage Systems Development
WP#3: Metal – Hydride Sorption Cooling based on Waste Heat / Solar Thermal (CSH) – Materials, Design and Device Development

Three work packages are inked via five institutions focusing on Materials – Process – Product Integration.

CONSORTIA

NFTDC|IISc|IITM|IITBBSR|SCTCE

Conduct state of art **TRL 3-7 translational R & D** in Materials to H₂ based Energy Devices in the area of SOFC, H2 Storage and Metal Hydride sorption cooling

Conduct Research & Development of **novel materials** as composites, graded materials, mixtures, materials + catalysts around the well – proven base materials to meet the figure of merit for **SOFC**, **H2 storage and Metal – Hydride sorption cooling**

OBJECTIVES OF THE CENTRE

Develop cost effective processes for synthesis, deposition, thermal treatment, thermo-mechanical processes, joining, precision manufacturing and assembly for enabling both **materials development** and their **scale – up** on one hand and **materials to products** manufacture on the other

Develop innovative designs and design for manufacture (DFM & DFA) of energy devices and conduct extensive simulation and modeling to distil high performance design configurations;

Design, develop and fabricate **cost effective process equipments** for materials synthesis and manufacture of devices

Render device designs in a **process** – **product integration and optimization paradigm** in TRL 4-6 translation to manufacture prototypes;

- **BOS** and **BioSyngas & CNG Reformation** and undertake larger system level development and eventually graduate to TRL -7 pilot production of SOFC devices.
- Develop functional test beds and conduct long duration testing of the device; integrate the device in field level applications;
- **System level modeling and simulation** to iterate the designs to optimize the performance parameters of efficiency, cycle life, ease of manufacture and cost metrics;
- Upgrade pilot plants and establish pilot plant for scale – up of advanced materials RE oxides, catalysts, RE alloys to ensure supply chain based on indigenous RE materials;
- Study techno economics for feasibility of large scale product manufacture and market acceptance;
- To conduct focused workshops on SOFC, H2 storage and Hydride Sorption cooling.
- To train the next generation researchers in SOFC, H2 storage and Hydride Sorption and develop system level thinking and engineering
- To interact with energy companies in India and abroad to translate product to business

SOFC

SOFC Materials – Bio Syngas/Fuel Reformation Device Design – BOS Device level simulation & Modelling Device Manufacturing & Testing

NFTDC + IISc + IIT BBSR

H2 – M&ES

Hydrogen Storage

Mg Based materials + C (graphene) Process Equipments (PCT-DSC) Simulation & Modelling Device Design + Fabrication + Testing

NFTDC + IIT M + CHITRA

Metal Hydride Sorption Cooling

La-Ni- X-Y Systems Process Equipments (Powder) Simulation & Modelling Device Design, Manufacturing & Testing

NFTDC + IIT M + CHITRA

Macro Tasks + Shared Responsibilities

Four centres, **IISc, Bangalore, IIT M, Chennai, IIT Bhubaneswar and Sree Chitra Thirunal College of Engineering, together with NFTDC** have appropriate core competence, decade(s) of experience, infrastructure facilities and proven track record to handle the problems chosen in this consortium.

FACILITIES & TASKS

IIT M

H2 storage + Sorption Cooling Simulation & Modelling

(software + Workstations)

> Lab Scale Apparatus

> Validation TRL 3 & 4

Sree Chitra

H2 storage + Sorption Cooling (software +

Workstations) Systems Level

Modelling TRL-3

NFTDC

Materials & Catalysts Pilot Plants

Process Equipment Engg Design + Fabrication

Device Design & Development

Test Beds & Long Duration Testing

TRL3-7

IISc

(SOFC)

Bio Syngas Production Facilities

In-situ Reformation Kit

SOFC Stack Design Validtaion for Effective Fuel Utilization

> Test Beds TRL 3 to 6

IIT BBSR

SOFC – Material Synthesis Equipments & Facilities

Extensive Materials Characterization Facilities

Cell Level Studies TRL3 & 4

Reformation, CHP & BOS for SOFC System

WORK PACKAGE – 1 SOFC Systems

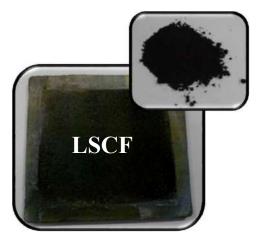
NFTDC | IISc | IIT BBSR

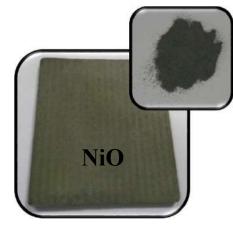
Target Device

- Bio Syngas reformation kit; CNG reformation kit
- 1 kW & 5kW SOFC stack as CHP System
- BOS >> Power Electronics (DC-DC & DC-AC)
- Cell: 0.9 -1.0 V & 60 Watts (100 x 100 mm)

Materials & Components

•Porous SS / Ni metallic foam anode support (area 80x80/100x100 mm)


- NiO/GDC (Gadolina doped Ceria) anode & LSCF cathode
- GDC as electrolyte & YSZ as interlayer
- Stainless Steel as interconnects.
- Active brazing materials (TiCuSil); Silicate insulation seals


•<u>Apparatus:</u>

- •Modification of Plasma Gun for liquid + solid spray deposition
- Design and Development of Ink Jet Printer nozzles.
- SOFC Stack level Test Bed for fuel optimization & SOFC performance
- Integrated SOFC BOX with all of above connected to Demonstration Load`


Input Powders (15-20 kg/batch) Synthesized in NFTDC

Particle Size Analyzer

Facilities: NFTDC >>Powder Production & Heat Treatment Processes

Jet mill >> powder Preparation HV-HT Furnaces for heat treatment

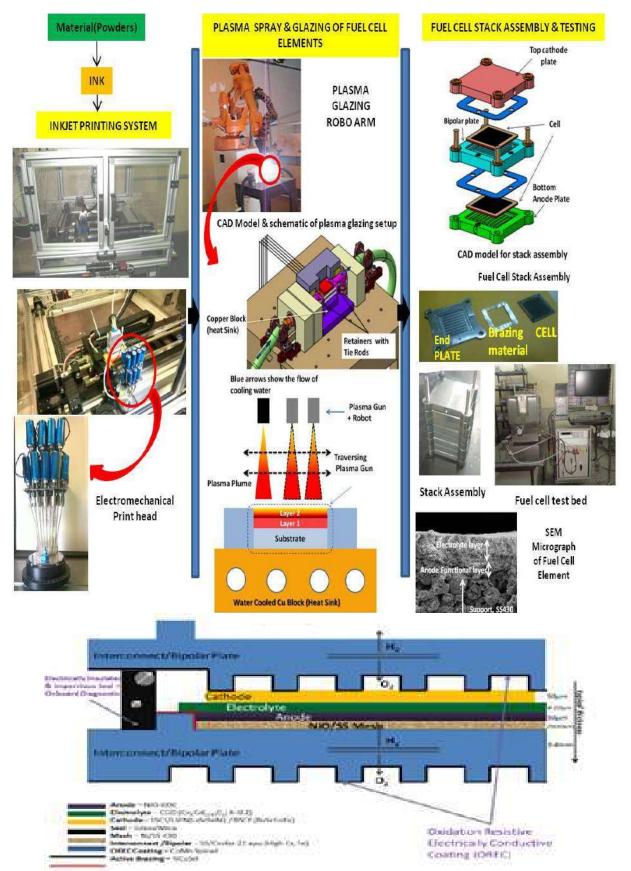
Helium leak detector

- Vacuum >> 10⁻⁵ mbar
- Max T >> **1500°**C
- Particle size 2 micron •
- Batch size up to 8 Kg
- Leak detection to 1X10⁻¹² m.bar.lit/sec

Facilities: NFTDC >> SOFC Cell Fabrication

Thin film & micro manufacturing

Ink Jet Printer - 16 nozzle assembly (Deposition : 0.5 μm / layer)



Plasma Spray Equipment + Robotic Arm

Plasma Gun Nozzle with Liquid Precursor or Powder Spray Deposition $(2 - 5 \mu m / layer)$

Process Flow from Materials to SOFC Stack >> NFTDC

Facilities: IISc >> Biomass to Syngas Fuel to SOFC Stack

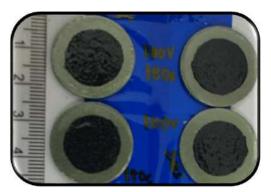
Inputs to Biomass Gasification

10 kW Biomass Gasification System

SOFC Test Bed



1 kW Biomass Gasification System



Gas Chromatograph

Facilities: IIT BBSR >> Materials to Button Cells & Characterization

Cell Fabrication Set-up

Button Cells

Testing Facility

H2 Storage – PCT Apparatus

DSC / TGA Equipment

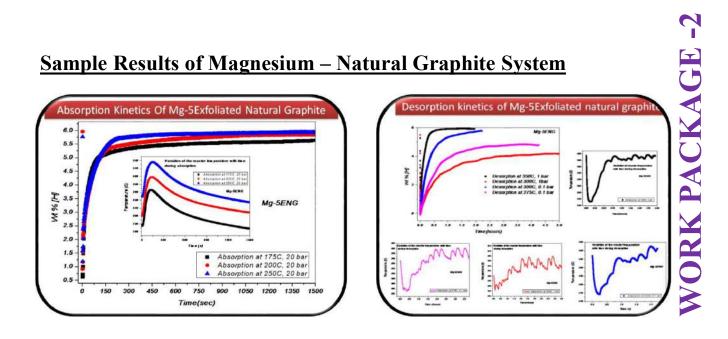
Electrochemical Station

Magnesium – Carbon based H₂ Storage Systems Development

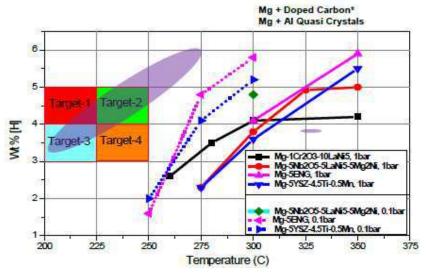
WORK PACKAGE – 2 Hydrogen Storage Systems

<u>NFTDC | IIT M | Sree Chitra Thirunal</u>

Target Device:


- Storage Device Biomimetic Design; Modeling & Optimization
- Adiabatic Solutions
- Fabrication $(35 50 \text{ grams of H}_2)$ with heater (max 300°C)

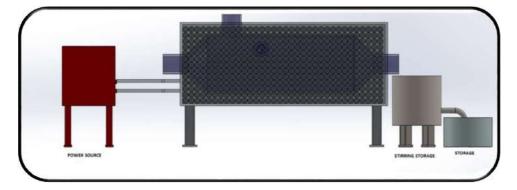
Materials:


- Mg + Graphene (1 5 wt%)
- Mg + Graphene + Dopants (B, N, P)
- Mg + Expanded Graphite (5Wt%) + dopant (B, N, P)
- Mg + Intermetallics + Carbon (Doped Graphene or doped ENG)

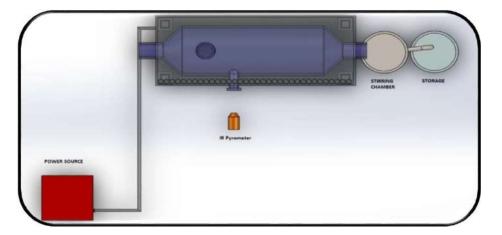
Apparatus:

- Microwave plasma based Graphene Production Apparatus
- PCT DSC

Magnesium – X system: Present Scenario vs Target to be achieved

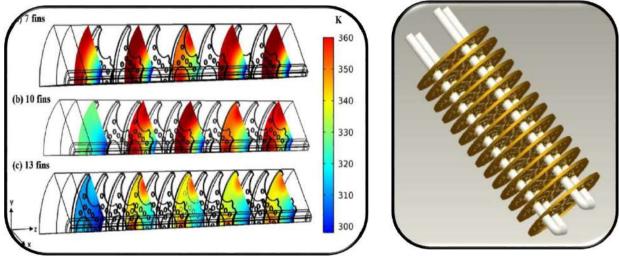


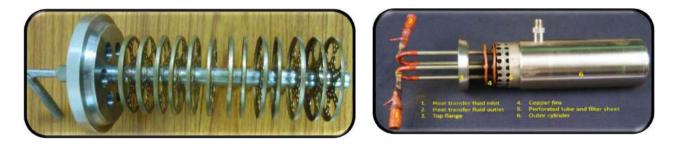
First Iterations of Experimental Hydrogen Storage Devices



Model of Equipment for Graphene Production - under design at NFTDC

PCT Apparatus and User Interface developed at NFTDC


Facilities: IITM >> H₂ Storage Materials to Device



H2 Storage Reactor Prototype - 1

Hydrogen Storage Facility

Temperature Distribution model of fins used in Reactor

Prototype - 2 after optimizing Thermal design of Reactor

Metal – Hydride Sorption Cooling based on Waste Heat / Solar Thermal (CSH) -Materials, Design and Device Development

WORK PACKAGE -3

WORK PACKAGE – 3

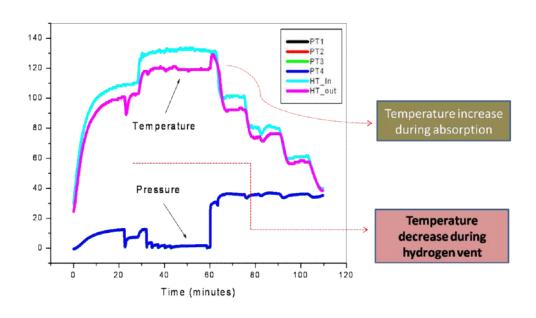
Metal – Hydride Sorption Cooling

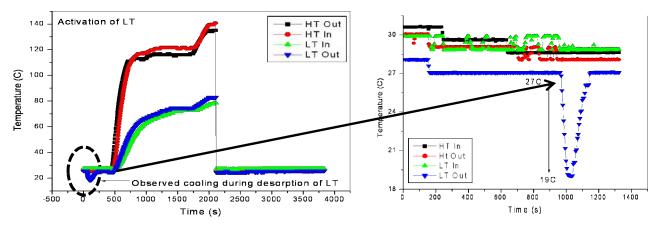
<u>NFTDC | IIT M | Sree Chitra Thirunal</u>

Target Device


- Biomimetic Design of Cooling Device: Carrier; H_2 : 2mm dia; Waste Heat: 3-6 mm dia; Device: diameter = 50 -80mm; length = 250 400mm
- Prototype Device with twin cartridges (HT & LT) coupled to waste heat source & 1m³ volume to be cooled from 40°C to 15°C as demonstration.
- •Two prototype configurations >> cabin and automotive application space.

Materials


- La Ni X (Al, Ce, Fe); 4 Compositions;
- per cartridge: 1.5 1.7 kg HT and 0.8-1.0 kg LT


<u>Apparatus</u>

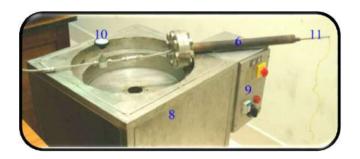
 Centrifugal Powder Preparation Apparatus for 1 kg powder/run. *Attributes*: T 2000°C max); Induction heating; Vacuum + Ar; Multi-layer crucibles to hold & spin liquid melt; ceramic nozzles Run Time 30 minutes charge to charge; rpm 300 – 500;

Sample Results of HT – LT System using Metal – Hydride

T - decrease 8°C per unit air volume in circulation per cycle

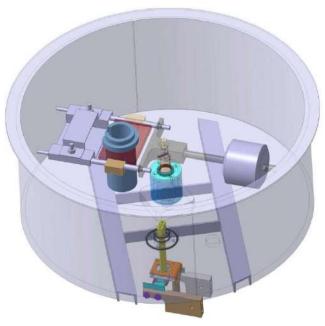
Facilities: IITM >> Powders to Sorption Cooling Device & Characterization

Planetary Ball Mill


Attritor Mill

Static & Dynamic PCT Measurement

Effective Thermal Conductivity Measurement



Hydrogen Storage Experimental Facility for Metal Hydrides

WORK PACKAGE -3

Facilities: NFTDC >> Materials to Device

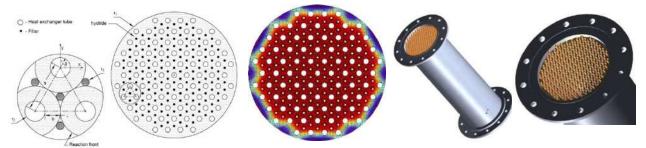
10 kW Induction Melting System

Vacuum Centrifugal Caster – Concept Design

Attritor Mill

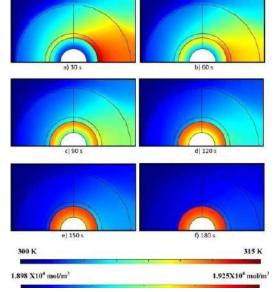
1 m³ Prototype of Metal – Hydride based Cooling Set-up (concept -1)

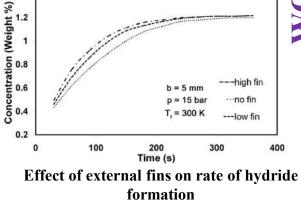
1 m³ Application

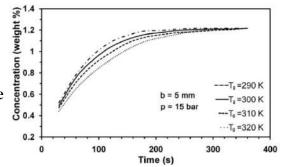

volume

Autor Autor

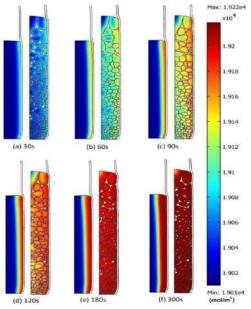
WURK PACKAGE -3

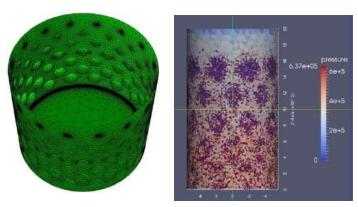



Modeling & Simulation: Sree Chitra Thirunal College of Eng



Numerical Study of Metal Hydride Storage Device with Embedded HX Tubes


1.4



Formation of hydride inside tubular storage within the air stream during absorption

Spatial variation of concentration in MH bed with Aluminum Foam (p=15 bar, T_f=300 K)

Effect of air temperature on hydride formation

Wall Stresses in Metal Hydride Container with Dimples

Principal Investigator NFTDC, Hyderabad

Dr. K. Balasubramanian

Co – Pl IISc, Bangalore

Prof. S. Dasappa

Co – Pl IIT M , Chennai

Prof. MP Maiya

Co – PI IIT Bhubaneshwar

Dr. Soobhankar Pati

Co – PI Sree Chitra Thirunal College of Engineering, Thiruvananthapuram

Prof. G. Mohan

